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Abstract-The paper examines reflection of a plane longitudinal wave incident upon the surface of
a half-infinite space the material of which is elastic. and the particles include two atoms of different
thermomechanical properties. Arter establishing the constitutive equations of the constituents,
equations of motion are solved by appeal to four quasi-potential functions. Satisfaction of the
boundary conditions yields the characteristic equation of the problem which-in contrast to the
conventional case. and in agreement with observations-indicates dispersion of waves. An example
involving relaxed bonds between the constituents is examined and illustrated by graphs.

I. INTRODUCTION

During the past 30 years a number of workers in mechanics made considerable efforts to
introduce into the familiar model of the material continuum some sort of an internal
structure known as microstructure.

The attacks in this direction started almost spontaneously. and this has come about in
spite of the fact that. for more than two centuries. the concept of the conventional continuum
served with distinction in theoretical spl."Culations. ~lt1d -what was more important-proved
to be of value in practical applications in all branches of engineering.

This state ofaffairs should come as no surprise: throughout the time that the technical
people stuck faithfully to the classical concepts. in the hands of physicists the theory of the
discrete media made a remarkable progress. This is noticeable most of all in the theory of
the solid state of matter in which. apart from many other things. the dynamics of lattices
were able to predict theoretically the actual values of some of the elastic moduli[ I].

The process of constructing new macroscopic theories of bodies proceeded in several
directions. One of the first was the introduction of the polar field theories as modernized
versions of the old concept of the couple stress proposed by the brothers Cosserat[2]. In
this connection mention should be made of the works ofTruesdell and Toupin[3]. Toupin[4].
Mindlin[5.6] and Eringen[7,8] among others.

Another theory. of great generality. was suggested by Green and Rivlin[9. 10]. These
authors used the concepts of higher order velocities and deformations plus those of multi­
polar forces and stresses.

The third line of generalization involved the so-called non-local continua in which the
range of interactions between particles is not limited to the conventional infinitesimal
neighborhood. The theories of the non-local continua were established for the most part
due to the efforts of Green and Rivlin[1I]. Kroener[12]. Eringen[13]. Edelen[14] and
Kunin[15].

More recently. Demiray[16] made known a study in which he formulated the foun­
dations ofa general continuum theory ofelastic media with the so-called diatomic structure.
In this structure the particles are composed of two interacting atoms of different thermo­
mechanical properties and overlapping in their initial positions. A deformation carries them
into distinct spatial places with the properties of the bulk material remaining unchanged.
The theory is easily extended to polyatomic bodies the particles of which comprise an
arbitrary number of dissimilar atoms.

In this paper (see also Ref. [17]) we wish to shed some light. however limited. on the
characteristic properties of undulatory motion in a diatomic elastic half-infinite space in
which a longitudinal wave impinges upon the traction-free surface of the medium.
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We first establish the constitutive equations of the medium. and the equations of
balance of momenta in terms of four quasi-potential functions.

Fulfillment of the boundary conditions leads to the characteristic equation of the
problem which-in contrast with the conventional case and in agreement with the obser­
vations-reveals a dispersion ofwaves.t The dispersion equation is analyzed in more detail
for a material in which interactions between the constituents are partially relaxed. The
analysis is illustrated by graphs.

2. GENERAL EQUATIONS

Let the XI-X3 plane of a Cartesian rectangular coordinate system {Xi}' i= 1.2.3,
coincide with the surface of a half-infinite material medium the .'l:2-axis of the systems
directed toward the interior of the medium (Fig. 1). The medium is assumed to be elastic.
homogeneous. isotropic. and of a diatomic structure. each of its constituents being des­
ignated for convenience by the index in parentheses «1) or (2».

Imagine that ideally the half-space X2 < 0 is a vacuum. that the surface of the medium
is free from external forces. and that a plane longitudinal wave. p. impinges upon the plane
X2 =0 in the direction PO. the latter making an angle ('I with the coordinate axis x,. On
retlt.'Ction. the wave P generates two separate waves: a longitudinal wave. r. and a
transverse one. SV'. the latter traveling in the direction OSV' and making the angle e'2 with
the XI-axis. Clearly. by assumption. all of the kinematic and dynamic quantities involved
in the process are independent of the xrcoordinate. and the medium is a state of plane
struin.

Within the framework of the theory of diatomic media established by Demiray in Ref.
lI6]. the stress components of interest. tij' i = 1.2. satisfy the equations of motion

tvtI+ t~'t2 ± RI-1'1 ii I = 0,

tV~.1 +t~~.2 ± R2-I'2ii2 = O. (i = 1,2) (\)

where the plus sign (minus sign) refers to medium (I) (to medium (2», PI and 1'2 are
the mass densities of media (I) and (2), respectively. the superposed dot denotes time
dilferentiation. and Ri = uu(xP} - xl"), i = 1, 2. are the rates of the momentum transfer
between the media. The balance of the moment of momentum implies that (for i = 1,2)

...(l}+ ... (2) - 0
'(ijl 'WI-

where

(2)

is the antisymmetric part of the stress tensors.
Since the displacement components are independent of the xrcoordinate, we introduce

four quasi-potential functions cP,(x" X2. t) and t{Ji(Xh X2. t) such that

p

...."..
•••••• 8\

--=c'----"'-~O~..>...:.~...:-.D;;---Xl

Fig. I. Geometry of the problem.

t As regards the agreement of the diatomic reflection coefficients with their actual values in diatomic media.
too little is known in order to pass an opinion.
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ulill = <PI.I +t/JI.Z, ullZl = cPZ.1 +t/Jz.z

U~I) = <PI.Z-t/JI.1o U~Z) = cPU-t/JZ.1 (3)

and the effects of the dilatation and rotation are separated.
The stress components in the case under discussion are

.,.(1) -'a el l)+2a e(Z)+(a e(l)+a e(Z»~··+2a (w!l)-aP)
"jj - - Z II 6 II I rr S rr II 7 II II

Here i,j = 1,2, the a;'s are material coefficients, ~jj is the Kronecker delta

(4)

(5)

"i. i = I. 2, is the displacement component. a comma denotes the differentiation (e.g.
ui•j == Cll;/OXj), and it is summed over the repeated indices (e.g. err == ell +ezz).

A combination of relations (4)-(6) immediately gives

rW = (2C1z + a t>llll~l + (2C16+ClS)lil~l + alll~~~ + ClsU~~~

rW = (2Clz + Cli )Il~~~ + (2Clt> +Cls)Il~~~ + a Itil~\ + Clstil:\

rW = (az - a7)dl~~ + (az + a7 )Il~~\ + (af> +a7)dl:~ + (af> -a7)u~:\. (7)

Thus, by inserting eqns (7) into the equations of motion. eqns (I). one arrives at two
independent systems of coupled p'lrtial differential equations

hi VZCPI +hzVzcjJz +h,,(q,z -cjJl) = PIc])1

hzVzcPI +blVZcjJz+h,,(cp, -cjJz) = IJzc])z

b4 VZt/J1 +bsV 2t/Jz+b,,(t/Jz-t/J.) = PI.]i1

bsVzt/J1 +b6VZt/Jz+b,,(t/J1 -t/Jz) = I'z.]iz

(8)

(9)

where V2 = iJ 2/iJx; +iJz/iJx~. The new material coellieients, b;'s, arc now defined in terms of
the earlier ones as follows:

(10)

Guided by the general correspondence principle stating that. after some appropriate
simplifications. a diatomic problem should convert into a standard, monoatomic problem,
we select the solution of eqns (8) and (9) in the form

wave p. incident

(1Ia)

wave r. reflected

(lib)
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wave SV', reflected
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(lie)

Here k. P.. P~, and" are some. as yet unspecified. coefficients. The reasons for taking the
solution of the problem in question in the just recorded form are threefold.

(I) The presence of the identical exponential multiplier eik(.• ,-ctl in aU of eqns (II)
guarantees the satisfaction of the imposed boundary conditions at the plane ;\:~ = O.

(2) Since the coefficients -PI. PI and P~ are equal to the tangents of angles ej, e'l and
e:, respectively. the presence of the identical coefficients p's in each of the pairs of eqns (II)
makes sure that the pairs of the associated wave constituents propagate in the same direction.

(3) The somewhat hidden assumption of the equality of the angles of the incidence
and reflection of the P wave is justified by the very fact that expressions (II) satisfy aU of
the conditions of the problem.

Ipso facto then, the only ditTerence between the representation of the constituents in
each pair of eqns (I t) consists in the value of the amplitude coefficients (such as A and B,
for example).

We now observe that the equations of the wave fronts of the P. P' and SV' waves are
all of the s.tme form '\"I-S.\"2-"t =const. (s = -PI. PI. p~). Consequently. by following
exactly the argument of the conventional wave theory we urrive at the generulizcd Snell's
luw

COS t'l cos e2
d"·1 .. =~'<ii"i- (12)

where ,,1'''1 =clO + pi) li2 and eti'a\. =c/( 1+pW i2 are the velocities of the longitudimtl and
transverse waves in an infinite diatomk medium, respectively. Again, PI = tan el and
P2 = tant'!, so that e =d,a')(cos <'I) =dial/(cos e'2), nnd in eqns (1Ia)··(llc) the .tppro­
priate wave numbers turn out to be kf = k/(cos e,) and k! = kl(cos e'2). respectively. The
corresponding frequencies. w, .\Od wavelengths, I, thus arc ke~·al/(cos<',). kc~,a,/(cos(2)

and (2x cos <'l)/k. (2x cos <,!)/k. respectively. With all this in mind. we substitute expressions
(II) into the field equations, eqns (8) and (9). und, after some manipulations. arrive ut the
conclusion that a non-trivial solution of eqns (8) requires that

(l3a)

wheret

\'1 =b,bJ-b~. \'2 = -(plbJ+P2hdk2C2+ho(hl+hJ+2b2)

V J = {PIP2k2,,2_(PI +P2)ho)k~c2. {I3b}

A similar condition for u non-triviul solution of system (9) is obtained by replacing
cocllicients hi. h2, hJ and PI by the eocmcients h~. b5• b6 undp2' respectively. and introducing
some new coeflicients v; that repluce the old ones, \',. i = 1,2.3. The operation (it turns out)
yields four values for each of the pammetcrs PI and pz as functions of the wave number
and the wave frequency. They are

(14a)

where

t Note that the products k'c: imply frequencies.
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(14b)

with the corresponding eltpressions for pz after replacing Vi' i = 1,2,3, by v;, i = 1,2,3,
respectively.

As far as the relations between the quantities c, c'lial., k, and ware concerned, it is
informative to rewrite eqn (l3a), and its companion equation, both solved with respect to
the frequency w. This gives

PIPZW4-wZ[bo(PI + pz) + (Plb) + P2b.) (I +pi)k2]

+bo(b, +b) +2b z)(1 +pnk2+ (bib) -bD (1 +pi) Zk 4 = 0 (15a)

for the longitudinal waves, and

PIP2W4 -wZ[ho(p. + pz) + (p ,b6 + PZb4) (I +pDk Z
]

+bo(b4+b6 +2hs) (I +pDk2+(b4b6 -b;) (I +pD 2k 4 = 0 (15b)

for the transverse waves. For the grazing incidence, that is for PI = pz = 0, the foregoing
equations reduce, as they should. to the equations derived directly in Ref. [16] for the
propagation of pl.me waves in an infinite diatomic space. It is good to note that either of
cqns (15) sign'lls the existence of the acoustical and optiC'll brunches of the undulatory
spectrum in question. the coefficients cc and cc' being associated with the optical and the
coefficients II and fI' with the acoustical branch, respectively. Again, the coefficients cc and
II are related to the longitudinal wave. und the coefficients cc' and p' involve the transverse
W.lVes. As regards eqns (13). by relating wave speed with wave number they clearly exhibit
the fact that the wuve motions in diutomic media are subject to dispersion.

If one wishes to reduce the diatomic results to those of the conventional theory one
has simply to set PI = pz = P and sever the bonds between the constituent materials by
assuming that bll = hz = bs = O. Equations (13) then furnish, for example

(16)

where d(=b1/p) == (i.+21J)/p and d( = b)lp) == IJ/p are the squares of the classical vel­
ocities of the longitudinal and transverse waves, respectively (compare, e.g. eqns (2.7) in
Ref. [18]).

Some additional features of the problem at hand are brought out by solving the
biquadratic equations, eqns (15a) and (15b), and finding the explicit relations between the
wave frequencies and the wave numbers. With regard to the longitudinal waves eqn (15a)
then yields

where the plus (minus) sign denotes the optical (acoustical) branch, and

jl = bo(p, +pz), h = (Plb) +P2b l)

j) = b6(b. +b)+2hz), j4 = b.b)-bi.

(17a)

(17b)

A similar result is gained for the transverse waves. For long waves, the province of the
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c1assicallinear elasticity, there is k « 1, and by disregarding powers of k higher than the
second one, one gets for the acoustical branch of the longitudinal waves

(l8a)

likewise

(18b)

for the same branch of the transverse waves.
It is worth noting that in the terms k~(1 +pr) and k~(1 +p~) in ali of the formulas

above one recovers the appropriate wave numbers referred to earlier as kT and k!, respec­
tively.

In the limit case, Le. for k -I> O. the frequency (J) vanishes so that the cut-off frequency
of the waves becomes equal to zero. Again by setting b~ = bs =O. and identifying b l and
b J as well as b4 and b6 with A+2Jl and p. respectively. one reduces relations (18) to their
Classical form.

Returning now to the field equations. eqns (8) and (9). we write their solutions in the
form

cP I = (II I c· jhtt +II 2 C·ikl'tt +A'I e ihft + II~ Clkllf:) eik(fll"ll

cP2 = (8
1

e -iht t + 8
2

C'lkllt: + 8', e ik1h : + 8~ eikllft) Cikhl ~ftl ( 19)

where the first two terms (the last two terms) refer to the incident (rel1l..'Cted) longitudinal
waves. Likewise, the representations of the reflected transverse waves arc found to be

(20)

At this stage we have to turn our attention to the stress conditions on the boundary of the
half-space. This is done in the next section.

3. BOUNDARY CONDITIONS

As already noted, the surface X2 == 0 of the medium is free from external load. The
boundary conditions, thereforc, arc

(2Ia)

(2Ib)

for all values of XI and at all times I.

Let us now introduce a partially new notation that extends slightly our earlier notation.
eqns (10). namely

hi = 2°2+(11. h2 = 206 +0,. hJ = 2a.j +oJ

h.j = 02-a7, h, = a6+a7, h6 = (14 -a7

h7 = aZ+a7. hs = a6-a7, hq = a.j+a7· (22)

We next substitute eqns (16) and (17) into eqns (3) and the result into eqns (7) and their
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companion equations. After some algebra we then arrive at the following final form ofeqns
(21a) and (2Ib):

for constituent (1)

(al +btprHA+A')+(as+b2PrHB+B')+(a,-bl)P2C'+(as-b2)pzD' =0 (23)

(b4+b,)PI(A-A')+(bs+bg)PI(B-B')+(b7-b4Pi)C'+(bg-bspi)D' = 0 (24)

for constituent (2)

(as+b3pi) (A+A')+(a3 +b3Pi) (B+B')+(as-b2)P2C' +(a3 -b3)P2D' "'" 0 (25)

(b s+bg)PI(A-A')+(b6 +b9 )PI(B- B')+(bg-bsp~)C'+(b9 -b6Pi)D' "'" O. (26)

The just listed system of four linear algebraic equations includes four pairs of and two
individual unknown amplitude coefficients. altogether six unknowns. This being so. the
representation of each of the unknown coefficients individually in terms of the remaining
ones cannot be achieved. and the only remaining alternative is to find the ratios of the
unknowns. The latter. however. turn out to be of a fairly complicated form. and their
analysis would rather obscure than clarify the salient points of the diatomic problems.
Taking inlo account this fact. il seems more productive to select a different line ofapproach;
namely. instead ofadhering to a full generality. simplify the adopted model of the diatomic
medium by relaxing in part the bonds existing between the constituent materials. For
mathematical convenience we adopt this procedure in the next section.

4. ILLUSTRATIVE EXAMPLES

An inspection of the constitutive equations. eqns (4) and (5). as well as of the field
equations. eqns (8) and (9). reveals the fact that the interactions between the constituent
materi.tls are represented by the cocfiicients 0tl> as. 0 6 and 01 (see also Table I in Ref. [17]).
In this connl.'Ction we examine briefly the following particular cases.

CO~'e I. First. we relax partially the interatomic connections by setting as. 06 and 01

equal to zero. but leaving the rates of the momentum transfer. that is. the coefficient 00.

intact.t As a result. the associated coefficients b2, bs and bs vanish, and in addition to that
one has hoi =b, = 02. and bl> = b9 = 04. so that eqns (23)-(26) become

[0, +(01 +202)prHA+A')-202P2C' =0

2p,(A-A')+(I-pi)C' =0

[0,+(03 +2a4)Pi) (B+ B')-204P2D' = 0

2PI(B-B')+(l-pi)D' = O.

(27)

(28)

After a simple elimination of constants the system above immediately gives the ratios
of the amplitudes

A' 4PIP202+(1-pi)P1
A =4PIP2QZ-(I-pi)PI

and

B' 4PIPZQ 4+(I-pi)P2

B = 4PIPZ04 -(I-pj)Pz

of the reflected and incident longitudinal waves, as well as

(29a)

(29b)

t It is of interest to note that (as mentioned in Ref. (16» the constant an plays the role of the spring constant
assumed in lattice dynamics {po 143 in Ref. (19]) to act between the atoms of the lattice.
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Constituent (I)

Constituent (2)
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Table 1

Diatomic coefficic:nts Monoatomic coefficients

A,
III

C' 4Pl
Ii =4PlP2a2-(I-pi)Pl

D' 4Pz
Ii = 4PlP2a4-(I-pi)P2

of the transverse reflected and longitudinal incident waves. Here

(30a)

(30b)

(31)

Case 2. If to the domain of the diatomic media one extends the concept of the so­
called Poisson material (for which in the conventional case there is ;. = II). then al = az
and at = a•• and ratios (29) and (30) tx.'Come explicitly independent of the materi<ll
constants. and fornmlly identic<ll with the c1~tssic<l1 formul<ls (sec. e.g. Refs [20. 21]).t

Cas£' 3. A linal simplilic~ltion is gained if (considering the existing par<lllelism between
the m'lterial constants) one sets dial = £'l and d1il1

. = '"2. where £', <lnd '"2 arc the well-known
conventional longitudimll and tr<lnsverse w.tve speeds. In this case. eqns (29) and (30)
become identical with their classical counterp'lrts.

C(l:~(' 4. With the intent to arrive at some more t.mgible. numerical results we return
to Case I. and in Tuble I recall the correspondence between the di<ltomic and the
monoatomie e1'1stie coellicients (sec also eqns (4) and (5». In light of these correlations, it
seems permissible to assume that al and Qz, on the one hand, and llJ and (14' on the other,
are connected each with the other by the agency of some hypothetical Poisson's constants,
VI .md V2' respectively.: in the same manner as are the classical Lame constants; thus,
at/az = 2vt/(1-2vl)' for example. By the symmetry of the problem, we then concentrate
our attention on constituent (I) alone. and consider two subcases: V I = 0 and 0.25, the
latter corresponding to the Poisson type material. In the first of these subcases there is
al/az = O. in the second one al/az = 1. Next, we introduce the notation

so that

pi = 11:0 +pf}-I

(32)

(33)

both in the conventional and in the diatomic context. Here the wave velocities Cidiat.• i = 1.2,
are identified with the corresponding velocities of very long waves (k« I) traveling in an
infinite diatomic medium (see eqns (5.16) in Ref. [16]). For bz = 0 the former become

t It should be clear that for the Poisson (also known as Poisson-Duhamel. see p. 143 of Ref. (22)) material.
the Poisson coefficient v .. 1/4.

: The Poisson constant notation should cause no confusion with our previous v notation in eqns (13).
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Fig. 2. Ratios of reftection amplitudes vs angle (',.

(34)

The values of the ratios A'/ A and C'/A of the wave amplitudes vs the values of the angle
(.\ are exhibited by the graphs in Fig. 2.

(a) The ratios A'/ A are depicted by two sets of curves. Curves I and II are calculated
according to the conventional theory assuming that v = 0 and 1/4. respectively. Curves 1',
I", I'" and II' are found by appeal to the theory of the diatomic bodies. In particular, curves
1'; I"; I"'; II' correspond to the combinations: VI = 0, V2 = 1/4; VI = O. V2 = 0.4; VI = 0,
K = 3; V, = 1/4, \'2 = 0.4; respectively.

(b) Curves III and Ill' illustrate the ratios C'/A under the assumption that v, respec­
tively v" is equal to zero, and that K = 2 (the conventional theory), and V2 = 1/4, K = 2.444
(the diatomic theory), respectively.

5. CONCLUDING REMARKS

The following concluding remarks seem now to be in order.

(I) In contrast to the conclusions of the conventional theory, and in full agreement
with the experimental evidence, the undulatory motions in unbounded media in their
diatomic aspect tum out to be dispersive.

(2) The interatomic bonds between the constituents of the diatomic media are rep­
resented by the interaction coefficients 0" 06' Q7 and 00, the latter corresponding to the
spring constant assumed to act between the atoms of the lattices in the lattice dynamics of
Born and von Karman.

(3) The interatomic bonds influence markedly the intensity of the reflected longitudinal
and transverse waves, by decreasing the magnitude of their amplitudes. This is so if one
compares the diatomic media with their conventional counterparts.

(4) As a simple illustration it is noted that-for e I = 30'\ say-infusion ofa constituent
with a Poisson's ratio V2 = 0.4 into the constituent with a Poisson's ratio VI = 0 (curve n
decreases the ratio A'/ A by more than 40%, as compared with the case of the conventional
material the Poisson's ratio V of which is equal to zero (curve I). Likewise, the diatomic
penetration of the constituent for which VI = 0 into the constituent for which V2 = 0.25
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(curve III') implies the reduction of the ratio CIA for e, = 60°, say, by about 20%, as
compared with the conventional material for which v == 0 (curve III).

(5) While in the simplified situations discussed in Section 4 the reflection coefficients
(see eqns (29) and (30» turned out to be independent of the wave frequency, the very
existence of the complex dispersion equations. eqns (IS). implies that in a more general
treatment the end results may become different.
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